
The Binary and Term Count Models

Abstract – This is Part 2 of an introductory tutorial series on Term Vector Theory as used in Information Retrieval and

Data Mining. The Binary (BNRY) and Term Count (FREQ) models are discussed.

Keywords: binary model, term count model, vectors term vector theory, term weights, local weights

Published:10-27-2006; Updated: 03-18-2016

© E. Garcia, PhD; admin@minerazzi.com

Note: This article is part of a legacy series that the author published circa 2006 at http://www.miislita.com, now a

search engine site. It is now republished in pdf format here at http://www.minerazzi.com, with its content edited and

updated. The original articles can be found referenced in online research publications on IR and elsewhere.

Introduction

In Part 1 of this series on vector space models (Garcia, 2016a) it was mentioned that in Information

Retrieval (IR) local and global information are used to score term weights

 (1)

where Li,j accounts for the presence of a term in a document and Gi across the collection.

The difference between the several models depends on how Li,j and Gi are defined (Baeza-

Yates & Ribeiro-Neto, 1999; Grossman & Frieder, 2004; Rijsbergen, 2004). In the next sections,

we discuss two of these models.

The Binary Model (BNRY)

The simplest model one can think of is a binary model (BNRY) where local weights are considered

independent of term frequencies and where global weights are ignored.

 (2)

In (1), wi,j = Li,j = 1 if the term is in the document; otherwise, wi,j = Li,j = 0.

mailto:admin@minerazzi.com
http://www.miislita.com/
http://www.minerazzi.com/

2

BNRY is recommended for pre-weighting or quickly scanning a small index and for scoring

small collections of short titles, abstracts, and documents. As documents of different lengths are

equally weighted, it is a low precision model (Salton & Yang, 1973) in the sense that it cannot

discriminate between relevant and non-relevant results.

Because of that, a retrieval system using BNRY will frequently find vocabulary-rich documents

simply because they happen to mention query terms. Thus, the model can be easily gamed by

automatically generating documents or pseudo-documents with frequently queried terms. This is

one of the many forms of spamdexing used across the Web (AIRWeb, 2007).

We can improve the model by making local weights a linear function of term frequencies. This

leads us to the Term Count Model.

The Term Count Model (FREQ)

The main assumption behind this model is that a document repeating a term several times is likely

to be relevant to said term. This idea was first proposed by Luhn and investigated by Salton and

Yang (Luhn, 1953; 1957; Salton & Yang, 1973; Salton, 1983).

So by making local weights a linear function of term frequencies

 (3)

one should be able to improve retrieval precision by finding relevant results at the top of the search

results. This is what the Term Count Model, also known as FREQ (Chisholm & Kolda, 1999), tries

to accomplish.

Unfortunately, assuming a linear relationship function between local weights and term

frequencies (Li,j = fi,j) is not a best matching approach, but can be exploited by simply repeating a

term. This is another form of spamdexing known as keyword stuffing (AIRWeb 2007).

One way of avoiding term repetition abuses consists in assigning a variable weight to different

instances of a given term. This is what Best Matching (BM) Algorithms try to accomplish, the most

famous of these is BM25 and its many variants (Wikipedia, 2016). These algorithms are discussed

in another tutorial series.

3

The Vector Space

Regardless of the weighting scheme used, documents and queries can be represented as objects

(points or vectors) in an n-dimensional space where each term is a dimension. So a document dj

with n number of terms can be represented as a point or vector with coordinates dj(w1,j, w2,j … wn,j).

As a query is like another document, its coordinates in said space are q(w1,q, w2,q … wn,q).

A vector is a quantity with direction and magnitude. The direction of a vector relative to other

vectors is obtained by multiplying their coordinates. The result is a quantity called the dot product,

dj•q. Thus, the dot product between a document and a query is obtained by multiplying the

coordinates dj(w1,j, w2,j … wn,j) and q(w1,q, w2,q … wn,q) and adding together the products,

 dj•q = w1,j* w1,q + w2,j* w2,q … wn,j* wn,q

 (4)

 Figure 1. shows the dot product between a document mentioning [auto] and [insurance] three

times each and [car] once. The query consists of the term [insurance]. The document vector is at

d(3, 1, 3) and the query vector at q(0, 0, 1).

Figure 1. Document and query vectors computed with the Term Count Model.

The magnitude of a vector is simply its Euclidean length, L, also known as the L2-norm, and

computed by squaring individual coordinates, adding them together, and taking square roots. Thus

for a document and query vectors, dj and q, their absolute magnitudes are

 (5)

 (6)

4

Dividing (4) with (5) and (6), we obtain the cosine of the angle, cos(), between document and

query vectors. As the two vectors approach each other, the angle between them, , decreases and

the cosine of the angle, cos(), increases. If the two vectors are superimposed, cos() = 1, and the

two vectors are fully similar to one another.

When computed to compare dj and q, cos() is taken for a resemblance measure and referred to

as the cosine similarity between dj and q, ,

 (7)

As cosines are not additive (i.e., a sum of cosines is not a cosine), they cannot be arithmetically

averaged. Therefore, computing arithmetic averages from cosine similarities is a misleading flawed

practice.

As shown later in this tutorial, (7) can also be obtained by computing dot products from unit

vectors; i.e., by normalizing vector elements with the vector length before computing their dot

products. This is the so-called cosine normalization. To indicate its usage, (1) is rewritten as

 (8)

where

 (9)

Other forms of weight normalizations have been proposed, though (Singhal, Buckley, & Mitra,

1996a; Singhal, Salton, Mitra & Buckley, 1996a; Singhal, Salton & Buckley, 1996c; Chisholm &

Kolda, 1999). Still, the Binary and Term Count models still tend to favor long documents simply

because they are longer (Lee, Chuang, & Seamons, 1997).

5

Cosine Similarity Calculations

Table 1 shows the result of scoring a collection of three documents mentioning the terms [auto],

[car], or [insurance] with the query [insurance] using the Term Count Model (FREQ).

Table 1. Term Count Model Results for 3 documents.

Index terms q

d1 d2 d3

auto 0

3 1 2

car 0

1 2 3

insurance 1

3 4 0

 3 4 0

 1

 9 21 13

 1

 4.36 4.58 3.61

 4.36 4.58 3.61

0.69 0.87 0

As expected,

Therefore, the documents are ranked in the following order: d2 > d1 > d3.

6

A Linear Algebra Approach

In a recent tutorial, we discussed a linear algebra approach that greatly simplifies vector space

calculations (Garcia, 2016b).

Essentially, the matrix qTA is computed where qT is the transpose of q and A is a matrix of

unit vectors
 . A unit vector, denoted with a hat (^), is obtained by dividing a vector elements by

its magnitude (L2-norm or Euclidean length). Thus, qTA is a matrix filled with cosine similarities

equal to dot products. The q, A, and qTA matrices obtained from the data shown in Table 1 are

Index terms

auto

0

0.69 0.22 0.55

 car q = 0 A = 0.23 0.44 0.83

insurance 1

0.69 0.87 0.00

d1 d2 d3

 q
T
A = [0.69 0.87 0]

Notice that the documents are ranked as before. To sum up, the so-called cosine normalization

is another way to say that we are computing the dot product between unit vectors. When unit

vectors are multiplied, by definition their dot product equals the cosine of the angle between them.

 Another way of achieving the same results consists in augmenting A with the unit vector of the

query and then computing the ATA similarity matrix. The query vector can be placed as the first

column vector, like this

Index terms

auto

0 0.69 0.22 0.55

 car A = 0 0.23 0.44 0.83

insurance 1 0.69 0.87 0.00

 q d1 d2 d3

1.00 0.69 0.87 0.00

q

A
T
A = 0.69 1.00 0.85 0.57 d1

 0.87 0.85 1.00 0.48 d2

 0.00 0.57 0.48 1.00 d3

7

Augmenting A in this way can be justified as in the vector space the query vector behaves like

a document vector. For the purpose of comparing vector similarities, making the query vector the

first, last, or a given column vector of A does not really matter.

So what do we gain from computing ATA? First, document ranking results are readily

computed, in this case from the first row or column of ATA. Second, a straightforward comparison

of document vector similarities is possible. In this example,

sim(d1, d2) = 0.85

sim(d1, d3) = 0.57

sim(d2, d3) = 0.48

That is, d1 and d2 are the most similar documents.

Conclusion

The advantages and limitations of the Binary (BNRY) and Term Count (FREQ) models have been

covered. Both models are based on computing local weights, ignoring global information.

BNRY ignores term frequencies, but FREQ does not. Both models ignore global information,

tend to favor long document, and are vulnerable to spamdexing. As both are based on matching

terms, documents not mentioning query terms, but their synonyms, are not retrieved even if these

are relevant to the query. This is a common drawback found in most vector space models.

Exercises

1. Rework this tutorial exercise, this time by defining Li,j in (3) as follows where for a given

document maxfi,j is its maximum term frequency and avefi,j its average term frequency. See

Chisholm & Kolda (1999).

8

References

AIRWeb (2007). Adversarial Information Retrieval on the Web. Retrieved from

http://airweb.cse.lehigh.edu/2007/cfp.html

Baeza-Yates, R. and Ribeiro-Neto, B. (1999). Modern Information Retrieval. Adisson Wesley.

Book Review. Retrieved from

http://www.amazon.com/gp/customer-

reviews/R2HC8ULDSMXKZQ/ref=cm_cr_arp_d_rvw_ttl?ie=UTF8&ASIN=020139829X

Chisholm, E. and Kolda, T. G. (1999). New Term Weighting Formulas for the Vector Space

Method in Information Retrieval. Oak Ridge National Laboratory. Retrieved from

http://www.sandia.gov/~tgkolda/pubs/pubfiles/ornl-tm-13756.pdf

Garcia, E. (2016a). Term Vector Theory and Keyword Weights. Retrieved from

http://www.minerazzi.com/tutorials/term-vector-1.pdf

Garcia, E. (2016b). A Linear Algebra Approach to the Vector Space Model. Retrieved from

http://www.minerazzi.com/tutorials/term-vector- linear-algebra.pdf

Grossman, D. A., Frieder, O. (2004). Information Retrieval: Algorithms and Heuristics. Springer.

Book Review. Retrieved from

http://www.amazon.com/review/RACNGPXD2GNE7/ref=cm_cr_dp_title?ie=UTF8&ASIN=1402

030045&channel=detail-glance&nodeID=283155&store=books

Lee, D. L., Chuang, H., and Seamons, K. (1997). Document Ranking and the Vector-Space Model.

IEEE March/April, pp 67-75. Retrieved from

http://www.cs.ust.hk/faculty/dlee/Papers/ir/ieee-sw-rank.pdf

Luhn, H. P. (1953). A New Method of Recording and Searching Information. Retrieved from

http://jonathanstray.com/papers/Luhn-SearchEngine-1953.pdf

http://airweb.cse.lehigh.edu/2007/cfp.html
http://www.amazon.com/gp/customer-reviews/R2HC8ULDSMXKZQ/ref=cm_cr_arp_d_rvw_ttl?ie=UTF8&ASIN=020139829X
http://www.amazon.com/gp/customer-reviews/R2HC8ULDSMXKZQ/ref=cm_cr_arp_d_rvw_ttl?ie=UTF8&ASIN=020139829X
http://www.sandia.gov/~tgkolda/pubs/pubfiles/ornl-tm-13756.pdf
http://www.minerazzi.com/tutorials/term-vector-1.pdf
http://www.minerazzi.com/tutorials/term-vector-linear-algebra.pdf
http://www.amazon.com/review/RACNGPXD2GNE7/ref=cm_cr_dp_title?ie=UTF8&ASIN=1402030045&channel=detail-glance&nodeID=283155&store=books
http://www.amazon.com/review/RACNGPXD2GNE7/ref=cm_cr_dp_title?ie=UTF8&ASIN=1402030045&channel=detail-glance&nodeID=283155&store=books
http://www.cs.ust.hk/faculty/dlee/Papers/ir/ieee-sw-rank.pdf
http://jonathanstray.com/papers/Luhn-SearchEngine-1953.pdf

9

Luhn, H. P. (1957). A Statistical Approach to Mechanized Encoding and Searching of Literary

Information. IBM Journal. Retrieved from

http://web.stanford.edu/class/linguist289/luhn57.pdf

Rijsbergen, K. (2004). The Geometry of Information Retrieval. Cambridge University Press, UK.

Book Review. Retrieved from

http://www.amazon.com/review/R3FM04FS4ZDHGC/ref=cm_cr_dp_title?ie=UTF8&ASIN=0521

838053&channel=detail-glance&nodeID=283155&store=books

Salton, G. (1983). Introduction to Modern Information Retrieval. McGraw-Hill.

Salton, G., Wong, A., Yang, C. S. (1975). A Vector Space Model for Automatic Indexing.

Communications of the ACM 18 (11): 613. Retrieved from

http://elib.ict.nsc.ru/jspui/bitstream/ICT/1230/1/soltan_10.1.1.107.7453.pdf

see also http://www.bibsonomy.org/bibtex/10a4c67f15a4869634d8e5e39ba3e7113

Salton, G. and Yang, C. S. (1973). On the Specification of Term Values in Automatic Indexing. TR

73-173, Cornell University. Retrieved from

https://ecommons.cornell.edu/bitstream/handle/1813/6016/73-173.pdf?sequence=1&isAllowed=y

Singhal, S., Buckley, C., and Mitra, M (1996a). ACM SIGIR’96, 21-29, 1996. Pivoted Document

Length Normalization. Retrieved from

http://singhal.info/pivoted-dln.pdf

Singhal, S., Salton, G., Mitra, M., and Buckley, C. (1996b). Document Length Normalization.

Information Processing and Management, 32:5, 619-633, 1996. Retrieved from

https://ecommons.cornell.edu/bitstream/handle/1813/7186/95-1529.pdf?sequence=1

http://web.stanford.edu/class/linguist289/luhn57.pdf
http://www.amazon.com/review/R3FM04FS4ZDHGC/ref=cm_cr_dp_title?ie=UTF8&ASIN=0521838053&channel=detail-glance&nodeID=283155&store=books
http://www.amazon.com/review/R3FM04FS4ZDHGC/ref=cm_cr_dp_title?ie=UTF8&ASIN=0521838053&channel=detail-glance&nodeID=283155&store=books
http://elib.ict.nsc.ru/jspui/bitstream/ICT/1230/1/soltan_10.1.1.107.7453.pdf
http://www.bibsonomy.org/bibtex/10a4c67f15a4869634d8e5e39ba3e7113
https://ecommons.cornell.edu/bitstream/handle/1813/6016/73-173.pdf?sequence=1&isAllowed=y
http://singhal.info/pivoted-dln.pdf
https://ecommons.cornell.edu/bitstream/handle/1813/7186/95-1529.pdf?sequence=1

10

Singhal, A., Salton, G., and Buckley, C. (1996c). Length Normalization in Degraded Text

Collections. Fifth Annual Symposium on Document Analysis and Information Retrieval, 149-162,

1996. Retrieved from

http://singhal.info/ocr-norm.pdf

Wikipedia (2016). Okapi BM25. Retrieved from

https://en.wikipedia.org/wiki/Okapi_BM25

http://singhal.info/ocr-norm.pdf
https://en.wikipedia.org/wiki/Okapi_BM25

