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Abstract – This fast track tutorial provides instructions for decomposing a matrix using the singular value 

decomposition (SVD) algorithm. The tutorial covers singular values, right and left eigenvectors. To complete the proof 

the full SVD of a matrix is computed. 
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Background 

In 1965, Golub and Kahan (1965) published their famous singular value decomposition (SVD) 

algorithm for obtaining the decomposition of a given rectangular matrix and its pseudo- inverse.  

Their work was first presented at the Symposium on Matrix Computations at Gatlinburg, 

Tennessee, in April, 1964. A link to their original ground-breaking article is given in the Reference 

section. The algorithm works as a dimensionality reduction technique and as follows. 

 

1. A rectangular matrix A is defined and its transpose AT and ATA product computed. 

2. The singular values of A are obtained by computing the eigenvalues of ATA. 

3. The diagonal matrix S and its inverse, S-1, are computed.  

4. The eigenvectors of ATA are obtained and V and its transpose, VT, computed.  

5. U = AVS-1 is computed. The original matrix can be recovered as A = USVT.  

 

An illustrative example follows. We assume that the reader is familiar with basic linear algebra 

and matrix calculations. 
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Example 

Compute the full SVD for the following matrix. 

 

 

 

Solution 

Step 1. Compute its transpose AT and ATA.  

 

 

 

Step 2. Determine the eigenvalues of ATA and sort these in descending order in the absolute sense. 

Square roots these to obtain the singular values of A.  

 

 

 

Step 3. Construct diagonal matrix S by placing singular values in descending order along its 

diagonal. Compute its inverse, S-1.  
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Step 4. Use the ordered eigenvalues from step 2 and compute the eigenvectors of ATA. Place these 

eigenvectors along the columns of V and compute its transpose, VT.  
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Step 5. Compute U = AVS-1 as the reduced matrix. To complete the proof, compute the full SVD 

using A = USVT.  

 

 

 

 

 

The orthogonal nature of the V and U matrices is evident by inspecting their eigenvectors. This 

can be demonstrated by computing dot products between column vectors. All dot products are 

equal to zero. Alternatively, we can plot these and see that they are orthogonal. See Figure 1. 

 

 

 

Figure 1. Left and Right Eigenvectors. 
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Questions 

For the matrix  

 

 

 

1. Compute the eigenvalues of ATA.  

2. Prove that this is a matrix of Rank 2.  

3. Compute its full SVD.  

4. Compute its Rank 2 Approximation.  

 

Conclusion 

In this fast track tutorial we provided instructions for decomposing a matrix using the singular 

value decomposition (SVD) algorithm. We discussed how singular values and right and left 

eigenvectors are computed. To complete the proof the full SVD of a matrix was computed. 
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