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Introduction 

In previous tutorials we discussed the difference between distance and similarity measures and the 

risks of arbitrarily transforming or averaging these (Garcia, 2015a; 2015b; 2015c; 2015d).  

We mentioned that a Pearson’s Correlation Coefficient (r) computed from mean-centered 

variables, or from z-scores, is a cosine similarity. In this case, r can be computed from the 

regression curve slope.  

We also mentioned that like correlations, slopes, and cosines, cosine similarity measures are 

not additive so we cannot compute arithmetic averages from any of these measures. The same can 

be said about standard deviations, rates, and dissimilar ratios. It should be noted that a mean value 

is not an estimate of central tendency when a distribution is either skewed or Cauchy. Furthermore, 

the Law of Large Numbers does not apply to a Cauchy Distribution. 

 

Conventions used in this tutorial 

This tutorial was written as a companion for a Cosine Similarity Calculator (Garcia, 2015a), and   

might serve as a basic tutorial for students and those starting in data mining and information 

retrieval. For the sake of clarity, we adopt the following conventions: 

 

 a and b are the    and     vectors. 

 dpab is the        dot product between a and b. 

 dpaa is the dot product of a with itself. 

 dpbb is the dot product of b with itself. 

 la and lb are the      and       vector lengths.  

    and    are unit vectors; i.e., la = lb = 1. 
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Instead of just saying that the cosine similarity between two vectors is given by the expression 

 

      
       

          
                    (1) 

 

we want to explain what is actually scored with (1). In the Appendix section, we have include a 

light discussion of (1) using a legacy material that inspired this tutorial. 

Similarity is an interesting measure as there are many ways of computing it. Indeed, we built a 

tool that computes over 70 different similarity measures (Garcia, 2016). Since there are so many 

ways of expressing similarity, what kind of resemblance a cosine similarity actually scores? This is 

the question that this tutorial pretends to address.  

Generally speaking, similarity is a measure of resemblance; i.e., how similar or alike things 

being compared are. One way of computing similarity is through the use of vectors.  

 

Representing data sets as vectors 

A matrix is just a table filled with values. Suppose that said table consists of r number of rows and 

c number of columns. We may refer to these as vectors. Thus for a square matrix, one with same 

number of rows and columns, row vectors are data sets of size n = c and column vectors are data 

sets of size n = r.  

A vector is a quantity or phenomenon with two independent properties: direction and 

magnitude. For n = 2 and n = 3, we can visualize a vector in its n-dimensional space as a line 

segment ending in an arrow. The orientation of the line segment is its direction, and the length is its 

magnitude. For n > 3 we cannot visualize vectors, but we can still compute them. 

 

Computing Dot Products 

We may multiply a vector by itself or another vector and compute a quantity called the dot product 

(dp). This is done by multiplying vector elements and taking summations. To illustrate, suppose 

that a and b are vectors such that  

 

 a = [1, 2, 3] 

 b = [4, -5, 6] 
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In this case, the dot product of  

 

 a with b is dpab = 1*4 + 2*-5 + 3*6 = 12 

 a with itself is dpaa = 1*1 + 2*2 + 3*3 = 14 

 b with itself is dpbb = 4*4 + -5*-5 + 6*6 = 77 

 

We may now ask: What kind of information is stored in dpab, dpaa, and dpbb? 

 

What information is stored in dpab?  

Good question: dpab holds information about the direction of the vectors. To be precise, if 

 

 dpab > 0, a and b form an angle less than 90o. 

 dpab = 0, a and b form an angle that is exactly 90o. 

 dpab < 0, a and b form an angle greater than 90o. 

 

Table 1 shows different types of angles. 

 

Table 1. Possible types of angles. 

Type acute right obtuse straight reflex perigon 

Angle,      

 

 

An angle of 0o means that cos  = 1 so the vectors point to identical directions. An angle of 90o 

means that cos  = 0 so the vectors point to perpendicular directions or are orthogonal.  

 

What information is stored in dpaa and dpbb? 

Taking square roots, it is clear that dpaa and dpbb hold length information. So 

 

 la = (dpaa)½ = (14)½ = 3.74    ; i.e., the length of a. 

 lb = (dpbb)½ = (77)½ = 8.77    ; i.e., the length of b. 

 la*lb = (dpaa)½ * (dpbb)½ = 32.83  ; i.e., the length product (lpab) of a and b. 
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In other words, (1) is a dot product/length product ratio 

 

370=
8432

12
== .

.
=θcos

dpdp

dp

lp

dp

bbaa

ab

ab

ab               (2) 

 

Therefore, when we compute a cosine similarity we are measuring the direction- length  

resemblance between data sets represented as vectors.  

 

Comparing Vectors of Different Lengths 

To compare vectors of different lengths, these can be recomputed as unit vectors. A unit vector is 

computed by dividing its elements by its length. In other words, we write the previous vectors as 

 

    = [1/3.74, 2/3.74, 3/3.74] 

    = [4/8.77, -5/8.77, 6/8.77]  

 

where the hat (^) denotes a unit vector. Since the new lengths are equal to 1, the cosine similarity 

between    and     is their dot product; hence  

 

  370== .θcos dp
b̂â

                    (3) 

 

Expressions (1), (2), and (3) return the same result, confirming that a cosine is a judgment of 

the orientation of the vectors, independent of their lengths (Wikipedia, 2015a). 

 

What does cos  = 0 mean? 

As mentioned before, an angle of 90o means that cos  = 0 so the vectors are perpendicular or 

orthogonal. This does not necessarily mean that the variables are uncorrelated.  

According to Rodgers, Nicewander, & Toothaker (1984) when referring to variables,  

orthogonal denotes that raw variables are perpendicular while uncorrelated means that centered 

variables are perpendicular. Centered variables are those with their mean removed, so they have 

zero mean.  
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It turns out that unlike vector length normalization, subtracting the mean from raw variables 

can change the angle between the vectors. The following can happen to the raw variables:  

 

 If they are perpendicular, can become not perpendicular so they are orthogonal, but not 

uncorrelated. 

 If they are not perpendicular, can become perpendicular so they are uncorrelated, but not 

orthogonal. 

 If they are perpendicular and remain perpendicular, they are orthogonal and uncorrelated. 

 If they are not perpendicular and remain not perpendicular, they are neither orthogonal nor 

uncorrelated—although their angle can change. 

 

The following figure, adapted from Rodgers et. al (1984), illustrates these relationships.  

Notice that not all uncorrelated variables are orthogonal and vice versa (Wikipedia, 2015b). The 

figure also shows that while all uncorrelated (or orthogonal) variables are independent, the reverse 

is not true.  

Therefore, a textbook referring to orthogonal variables as uncorrelated is probably referring to 

paired random variables with zero mean; i.e., to the overlapping region shown in the figure.   

 

 

 

 

Figure 1. Venn Diagram for linearly independent, uncorrelated, and orthogonal variables . 
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These results are not surprising. It can be shown for centered variables that  

 

r = cos                        (4) 

 

Because r is the covariance of paired variables normalized by their standard deviation, 

 

 
ss

cov

ba

ab
r =                       (5) 

 

so for centered variables if cos  = 0, then r = 0, covab = 0, and the variables must be uncorrelated. 

The relationship r = cos  is also true for standardized variables, also known as z-scores. These 

are centered variables normalized by their standard deviation. Transforming variables into z-scores 

is, though not always, useful and recommended.  

Once in a z-score format, we can run other types of tests on the variables like a quantile- 

quantile analysis (Garcia, 2015e), or even compute r, and therefore cos , from the slope of the 

regression curve of z-scores. For those interested, we have developed another  

tool called the Standardizer (Garcia, 2015f). This tool was initially thought of as an x-to-z-score 

standardizer, hence its name. It is now a versatile statistical tool for univariate analysis.  

 

Conclusion 

Unlike other similarity measures, a cosine similarity is a measure of the direction-length 

resemblance between vectors.  

An angle of 0o means that cos  = 1 and that the vectors are oriented in identical directions; i.e., 

that the corresponding data sets are completely similar to one another. An angle of 90o means that 

cos  = 0 and that the corresponding variables are perpendicular, but not necessarily that are 

uncorrelated unless these are also mean-centered. 

Computing cos  from raw and center variables are two different things. This fact  

can be used to examine relationships between paired variables. Regardless of the method used for 

calculating cosine similarities, and for the sake of transparency, it is always a good idea to state 

whether raw or centered variables were used and why.  
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Appendix 

Provided below is the legacy material that inspired this tutorial, extracted from the article Cosine 

Similarity and Term Weight Tutorial which I published circa 2006 at http://www.miislita.com, now 

a search engine site. After many thoughts I am adding this material with its content heavily edited.  

Let us first define a reference point C(x0, y0) at the origin of the x-y plane so by default 

x0 = 0, y0 = 0. Similarly, let’s refer to any two points, A and B, on this plane as A(x1, y1) 

and B(x2, y2). See Figure A1.  

 

 

 

Figure A1. Coordinates of points, A, B, and C in a two-dimensional plane. 

 

If we multiply the coordinates of A and B and add the products together we get the 

"mythical" dot product.  

 

A•B = x1*x2 + y1*y2                 (a1) 

 

 The little bullet in "A•B" indicates -you guess right- the dot product between A and B. 

If these points are defined in three dimensions, their coordinates are (x1, y1, z1) and (x2, y2, 

z2), and can be referred to as A(x1, y1, z1) and B(x2, y2, z2). The A•B dot product is given 

now by 

  

A•B = x1*x2 + y1*y2 + z1*z2                (a2) 

 

For additional dimensions, we just keep adding product terms to (a2). It cannot get any 

easier than this.  

http://www.miislita.com/
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Now, to define a straight line we need at least two points. So if we draw a straight line 

from C to either A or B, we can define the distance between the points. This is called the 

Euclidean Distance d which is computed in three easy steps: 

 

1. Take the difference between point coordinates. 

2. Square all differences and add them together. 

3. Square root the result.  

 

Since we have defined x0 = 0 and y0 = 0, then to find out how far A and B are from C, 

we define the Euclidean Distances 

 

dAC = ((x1 - x0)2 + (y1 - y0)2)1/2 = (x1
2 + y1

2)1/2          (a3) 

 

dBC = ((x2 - x0)2 + (y2 - y0)2)1/2 = (x2
2 + y2

2)1/2          (a4) 

 

Figure A2 depicts these distances as straight lines connecting the points.  

 

 

 

Figure A2. Straight lines representing Euclidean Distances between points A and B, with C. 

 

The straight lines in Figure A2 can be replaced by arrows representing vectors. As 

previously discussed, a vector is a quantity with direction and magnitude. The head and 

angle of the arrow indicates the direction of the vector, while its magnitude is defined by 

the usual Euclidean Distance.  
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Since in this example x0 = 0 and y0 = 0, we can simplify and express the magnitudes of 

the A and B vectors as dAC = |A| and dBC = |B|. Again, the pipe symbol indicates that we 

are dealing with absolute magnitudes.  

Thus, the lengths of the arrows represent vector magnitudes. The angle described by 

the vectors represents their orientation in a two-dimensional space. See  Figure A3.  

 

 

 

Figure A3. A and B Vectors. 

 

To normalize the A•B dot product we divide it by the Euclidean Distance between A 

and B; i.e., A•B/(|A||B|). This ratio defines the cosine of the angle between vectors, 

commonly known as the vectors cosine similarity (cosim) and denoted below as Sim(A, B). 

 

               
   

      
 

           

    
    

     
    

  
            (a5) 

 

Some Applications to Information Retrieval 

As the angle between the vectors shortens,      approaches 1, meaning that the two vectors are 

getting closer so the similarity of whatever is represented by the vectors increases. This is a 

convenient way of ranking searchable documents. For instance, let say that A(x1, y1) represents a 

query q and points B(x2, y2), D(x3, y3), E(x4, y4), F(x5, y5),… represent documents.  

We should be able to compute the cosine of the angle between q and each document D and 

sort the documents in decreasing order of cosine similarites. This treatment can be extended to 

entire collection of documents.  
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To do that we need to construct a term space. The term space is defined by an index or list of 

unique terms. These terms are extracted from the collection of documents to be queried. The 

coordinates of the points representing documents and queries are now defined according to a 

weighting scheme. 

 

                
          

    
 

       
 

 

              (a6) 

 

where the sigma symbol () means "the sum of" and w are weights assigned to query and 

document terms. The following is a list of some of the weighting schemes utilized by early 

web search engines for retrieving and ranking documents:  

 

 w = tf 

 w = tf/tfmax  

 w = IDF = log(N/n)  

 w = tf*IDF = tf*log(N/n)  

 w = tf*IDF = tf*log((N – n)/n)  

 

where 

 

 tf  stands for term frequency or how many times a term is mentioned in a document. 

 tfmax is the frequency of the term that is mentioned the most. 

 N is the size of the collection of documents queried.  

 n is the number of documents mentioning a query term. 

 IDF stands for Inverse Document Frequency. 

 

Modern search engines use algorithms less dependent on tf and that cannot be gamed by 

artificially repeating terms. Some of these are the family of algorithms known as Best Match 

(BM), Latent Semantic Indexing (LSI), and similar algorithms. 
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